Variable selection by association rules for customer churn prediction of multimedia on demand

نویسندگان

  • Chih-Fong Tsai
  • Mao-Yuan Chen
چکیده

Multimedia on demand (MOD) is an interactive system that provides a number of value-added services in addition to traditional TV services, such as video on demand and interactive online learning. This opens a new marketing and managerial problem for the telecommunication industry to retain valuable MOD customers. Data mining techniques have been widely applied to develop customer churn prediction models, such as neural networks and decision trees in the domain of mobile telecommunication. However, much related work focuses on developing the prediction models per se. Few studies consider the pre-processing step during data mining whose aim is to filter out unrepresentative data or information. This paper presents the important processes of developing MOD customer churn prediction models by data mining techniques. They contain the pre-processing stage for selecting important variables by association rules, which have not been applied before, the model construction stage by neural networks (NN) and decision trees (DT), which are widely adapted in the literature, and four evaluation measures including prediction accuracy, precision, recall, and F-measure, all of which have not been considered to examine the model performance. The source data are based on one telecommunication company providing the MOD services in Taiwan, and the experimental results show that using association rules allows the DT and NN models to provide better prediction performances over a chosen validation dataset. In particular, the DT model performs better than the NN model. Moreover, some useful and important rules in the DT model, which show the factors affecting a high proportion of customer churn, are also discussed for the marketing and managerial purpose. 2009 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical Alpha-cut Fuzzy C-means, Fuzzy ARTMAP and Cox Regression Model for Customer Churn Prediction

As customers are the main asset of any organization, customer churn management is becoming a major task for organizations to retain their valuable customers. In the previous studies, the applicability and efficiency of hierarchical data mining techniques for churn prediction by combining two or more techniques have been proved to provide better performances than many single techniques over a nu...

متن کامل

A Fuzzy Rule-Based Learning Algorithm for Customer Churn Prediction

Customer churn has emerged as a critical issue for Customer Relationship Management and customer retention in the telecommunications industry, thus churn prediction is necessary and valuable to retain the customers and reduce the losses. Recently rule-based classification methods designed transparently interpreting the classification results are preferable in customer churn prediction. However ...

متن کامل

A Novel Genetic Algorithm Based Method for Building Accurate and Comprehensible Churn Prediction Models

Customer churn has become a critical problem for all companies in particular for those that are operating in service-based industries such as telecommunication industry. Data mining techniques have been used for constructing churn prediction models. Past research in churn prediction context have mainly focused on the accuracy aspect of the constructed churn models. However, in addition to the a...

متن کامل

Neighborhood Cleaning Rules and Particle Swarm Optimization for Predicting Customer Churn Behavior in Telecom Industry

Churn prediction is an important task for Customer Relationship Management (CRM) in telecommunication companies. Accurate churn prediction helps CRM in planning effective strategies to retain their valuable customers. However, churn prediction is a complex and challenging task. In this paper, a hybrid churn prediction model is proposed based on combining two approaches; Neighborhood Cleaning Ru...

متن کامل

Customers Churn Prediction and Attribute Selection in Telecom Industry Using Kernelized Extreme Learning Machine and Bat Algorithms

With the fast development of digital systems and concomitant information technologies, there is certainly an incipient spirit in the extensive overall economy to put together digital Customer Relationship Management (CRM) systems. This slanting is further more palpable in the telecommunications industry, in which businesses turn out to be increasingly digitalized. Customer churn prediction is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2010